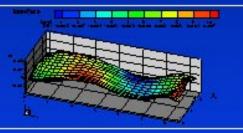
Introduction to Thermo-Electric Modeling of Aluminium Reduction Cells

Marc Dupuis

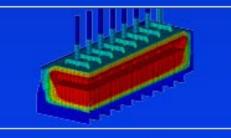
Plan of the Presentation

- Modeling the Hall-Héroult Cell
- Mass and Thermal Balance
- Voltage Break Down Concept
- The Two Zones Heat Partition Concept
- List of Modeling Tools from GeniSim
- Dr Marc Dupuis Experience Building T/E Models
- GeniSim T/E Modeling Success Story
- Conclusions

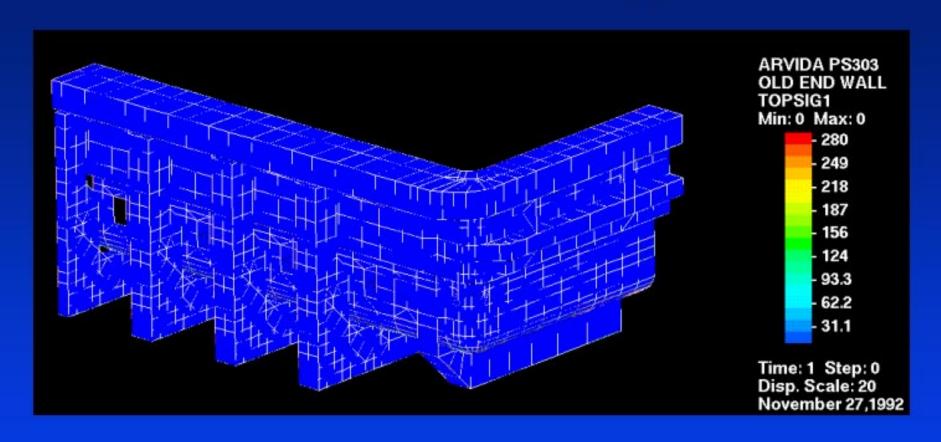

Modeling the Hall-Héroult Cell

The main three pillars of Hall-Héroult cell design

 Stress models which are generally associated with cell shell deformation and cathode heaving issues.

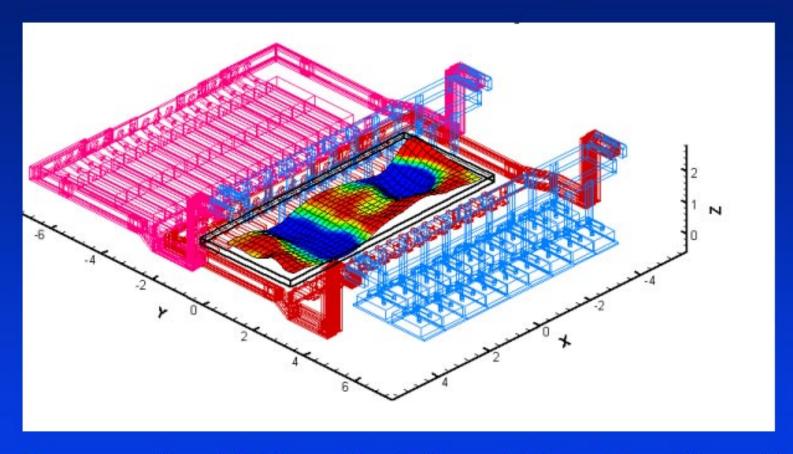

Magneto-hydro-dynamic (MHD)
 models which are generally
 associated with the problem of cell
 stability.

Design

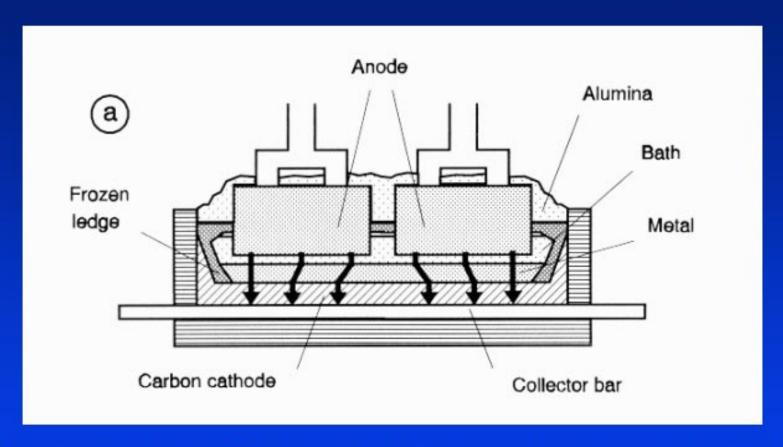

Cell

 Thermal-electric models which are generally associated with the problem of cell heat balance.

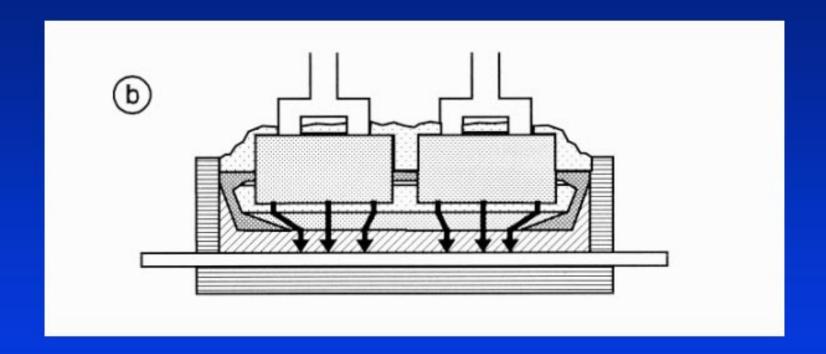
Grnisim


Stress Modeling

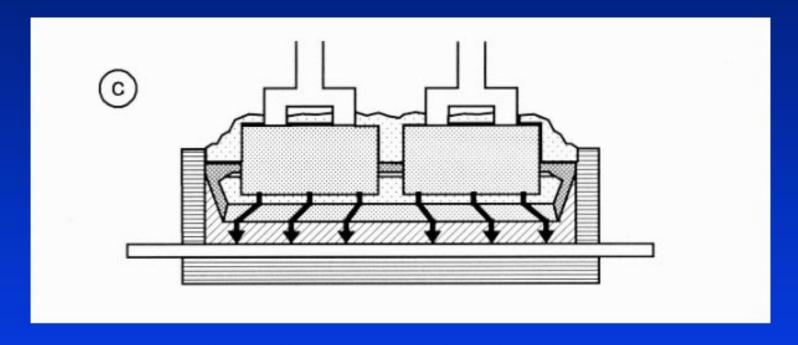
To prevent excessive deformation of the potshell


MHD Modeling

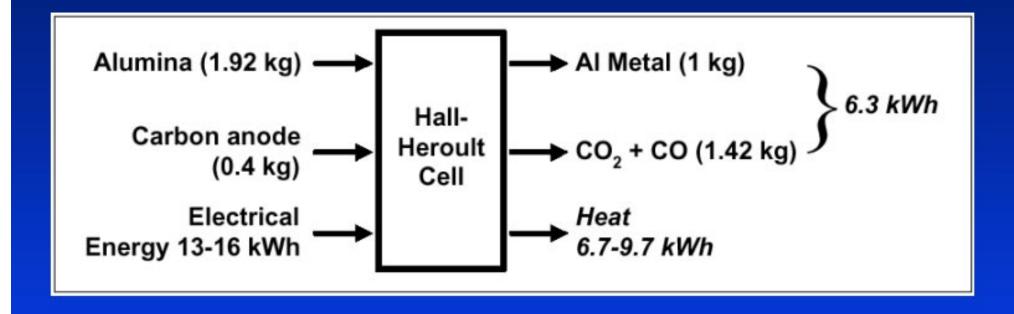
To ensure the stability of the bath-metal interface of the cell


Thermo-Electric Modeling

To ensure that the cell is operating with the optimum ledge protection

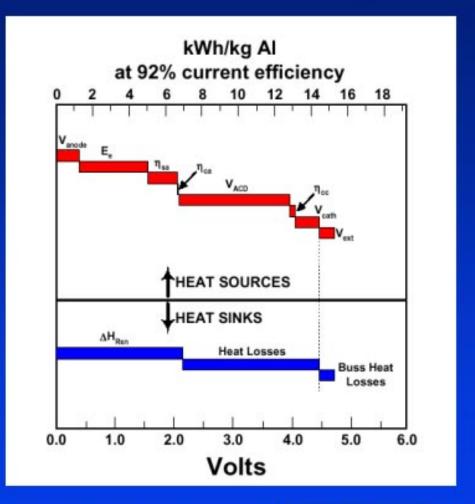

Thermo-Electric Modeling

Too much is bad for the cell stability

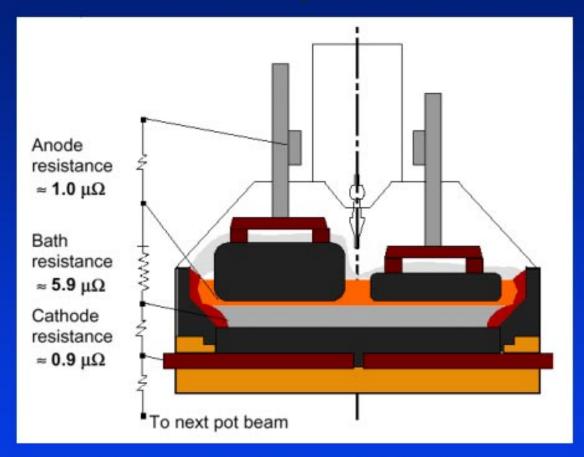

Thermo-Electric Modeling

Not enough is not good for cell stability and especially bad for the cell life

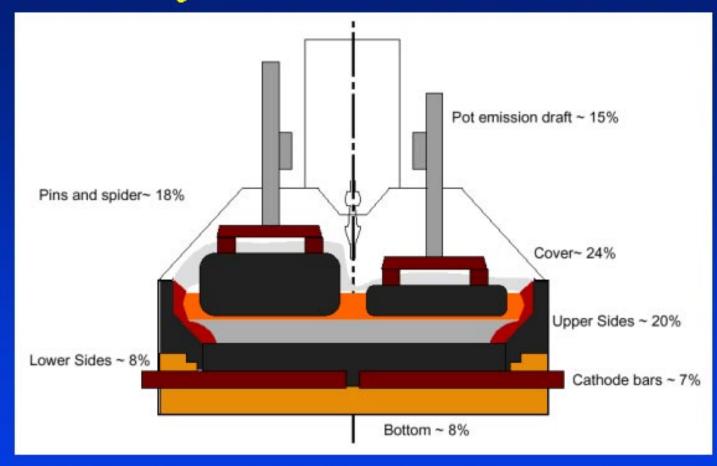
Mass and Thermal Balance



Over long periods of time neither mass or energy can accumulate in a cell, it must globally operates in mass and thermal balance


Voltage Break Down Concept

In thermal balance, the cell voltage minus the external voltage is equal to the equivalent voltage to make the metal plus the equivalent internal heat voltage

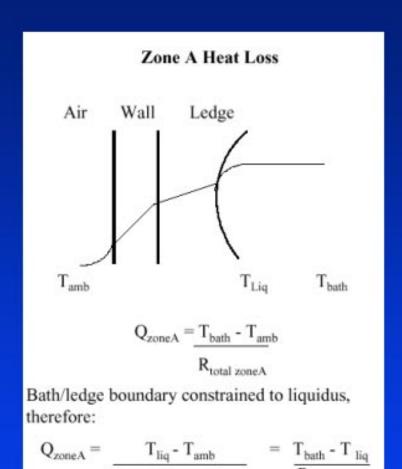

Heat Generated by the Joule Effect

Most of the Joule Heat is produced in the Bath

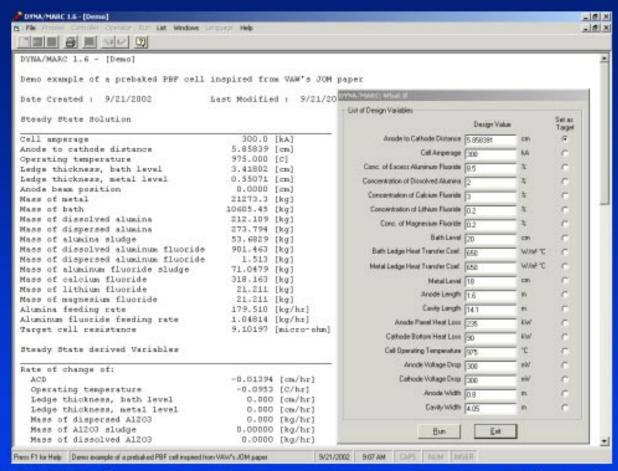
Heat Loss by Convection and Radiation

Heat Partition depends on the anode and cathode lining design

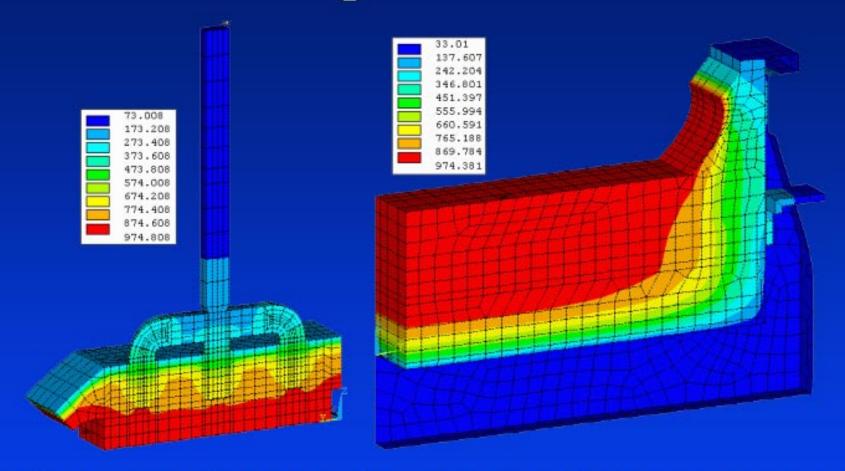
Two Zones Heat Partition Concept


The cell superheat dictates the amount of heat dissipates in zone A

Zone A Heat Loss Mechanism

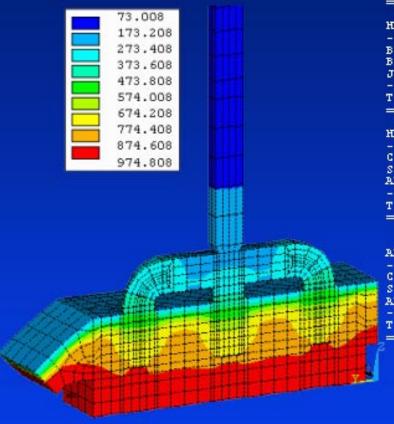

The difference between the cell internal heat and the cell heat loss in zone B will dictates the cell superheat that in turn will dictates the ledge thickness.

So in order to design a cell with an optimum ledge thickness, the cell designer must ensure that the need for cell heat loss in zone A will in turn be optimum, by proper evaluation of the cell internal heat and proper design of the zone B heat loss.


List of Modeling Tools from GeniSim

Steady/MARC, lump parameters+: simplest and fastest approach

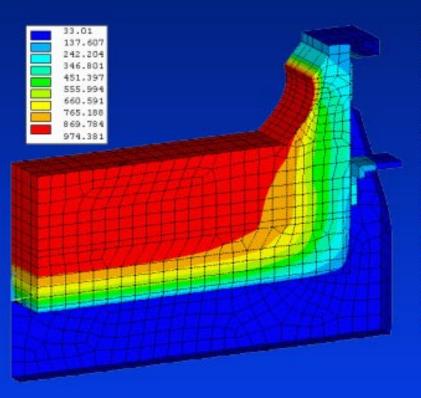
List of Modeling Tools from GeniSim



3D half-anode, 3D cathode slice and DOS/MARC: classic approach

3D Half Anode Model Results

HEAT INPUT	W	W/m^2	
Bath to anode carbon Bath to crust Joule heat	1491.59 642.57 1403.42	1508.61 3161.81	42.16 18.16 39.67
Total Heat Input	3537.57		100.00
HEAT LOST	w	W/m^2	
Crust to air Studs to air Aluminum rod to air	1394.79 1819.48 408.50	1651.42 4067.71 693.78	38.50 50.22 11.28
Total Heat Lost	3622.77		100.00


ANODE PANEL HEAT LOST	kW	₩/m^2	
Crust to air Studs to air Aluminum rod to air	89.27 116.45 26.14	1651.42 4067.71 693.78	38.50 50.22 11.28
Total Anode Panel Heat Lost	(231.86)		100.00

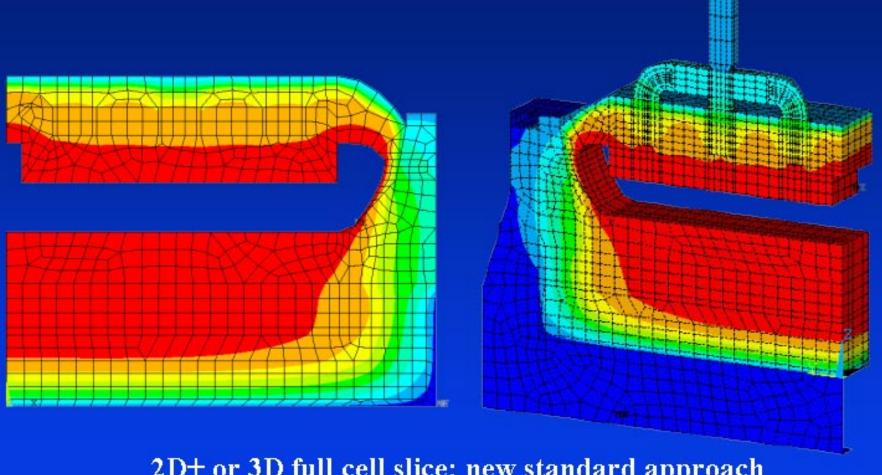
Aug. Drop	Current at
at clamp	anode Surf
(mV)	(Amps)
(302.910)	4687.500
(302.910)	4007.500

Targeted cell current: 300000.00 Rmps Obtained cell current: 300000.00 Rmps

3D Cathode Side Slice Model Results

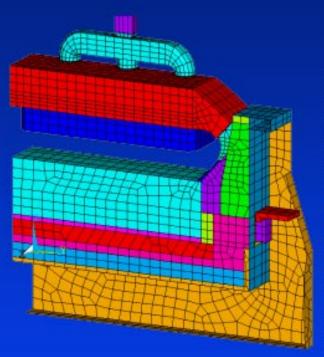
****	HEAT BALANCE	TABLE	****
****	Side Slice Hodel	: vaw_20	****

HODEL	HEAT	IN/OUT	W	₩/m^2	
Total Total			4517.31 4545.21		100.00 100.00

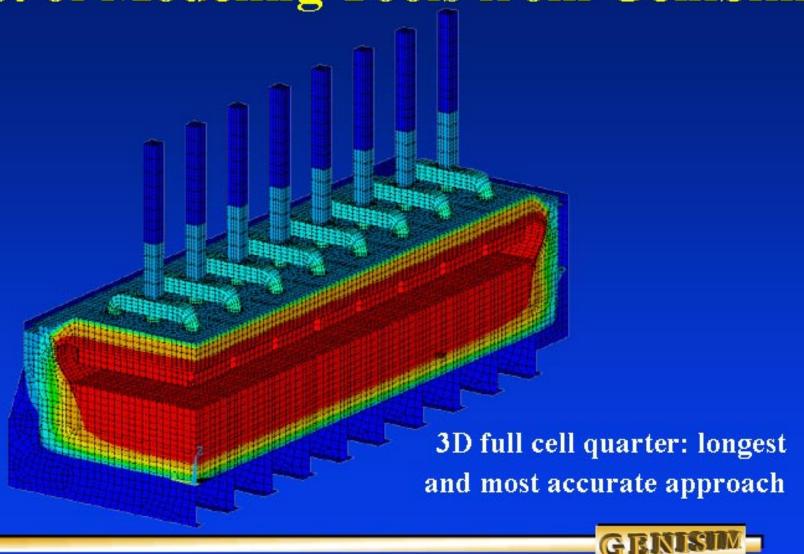

CATHODE HEAT LOST	kW	W/m^2	
Shell wall above bath level	62.81	1344.21	15.99
Shell wall opposite to bath	40.42	5399.96	10.29
Shell wall opposite to metal	40.61	7220.85	10.34
Shell wall opposite to block	83.88	5797.58	21.36
Shell wall below block	8.91	669.22	2.27
Shell floor	24.02	414.59	6.12
Cradle above bath level	2.67	1585.30	. 68
Cradle opposite to bath	9.58	2164.69	2.44
Cradle opposite to metal	6.30	2601.20	1.60
Cradle opposite to block	25.24	927.80	6.43
Cradle opposite to brick	3.74	159.54	. 95
Cradle below floor level	14.74	99.09	3.75
Bar and Flex to air	45.23	2653.04	11.52
End of flex to busbar	24.54	40579.69	6.25
Total Cathode Heat Lost	(392.71)	}	100.00

Aug. Drop at Bar End (mV)	Average Flex. Drop (mV)	Current at Cathode Surf (Amps)
(285.44)	7.474	4166.667

Targeted cell current: 300000.00 Amps Obtained cell current: 300000.00 Amps


List of Modeling Tools from GeniSim

2D+ or 3D full cell slice: new standard approach


3D Full Cell Slice Model Results

**** HEAT BALANCE SUMMARY **** Full slice Model : VAW 300	****	
INTERNAL HEAT CALCULATION		
Operating temperature	972.17	°C
Bath Resistivity	.424563	
Anode Current Density	. 732422	A/cm^2
Cathode Current Density	.668449	
Bath Voltage	1.58152	The second second
Electrolysis Voltage	1.92456	the latest latest
Total Cell Voltage	4.29380	And in case of the latest terms.
Equivalent Voltage to Make Metal	2.01837	
Current Efficiency	93.2480	*
Internal Heat Generation	622.630	kW
TOTAL HEAT LOST		
Total Anode Panel Heat Loss	237.289	kW
Total Cathode Heat Loss	385.233	
Total Cell Heat Loss	622.522	kW
HEAT UNBALANCE	.02	B

List of Modeling Tools from GeniSim

Examples of Applications of a 3D Full Cell Slice Thermo-Electric Model

	Base Case	Retrofit 1	Retrofit 2
Cell amperage (kA)	300	350	265
Cell internal heat (kW)	628	713	427
Cell kWh/kg	13.75	13.40	11.94

These two extreme cases clearly demonstrate that as far as the cell thermal balance is concerned, the window of opportunities is quite wide. Only a complimentary technico-economical study will indicate which of the two retrofit scenarios offer the best return on investment.

Dr. Marc Dupuis Experience Building T/E Models

With Alcan

1987-1994: Alcan prototypes: A275, A265-H, A310

Alcan prebaked: A70, A140, A165

Alcan HSS Alcoa P155

Pechiney AP18

With GeniSim 1996-2003:

Pechiney AP30

Alcoa: P155, A697

Reynolds prebaked: P-19, P-20S, P-23S

Kaiser P69

Reynolds HSS Pechiney HSS

Alcan VSS

GeniSim T/E Modeling Success Story

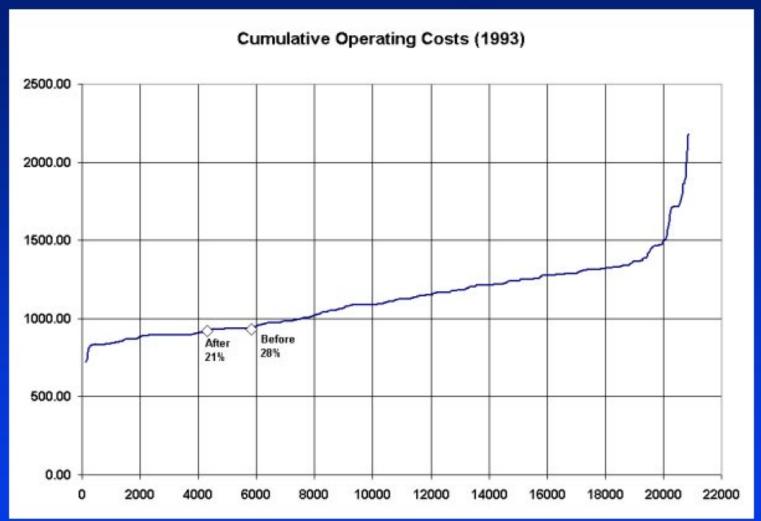
			START-UP	LATEST POTS
PR	ODUCTION:		1992	1998
:	Production per pot/day	y (kg)	2245	2466
•	Current efficiency	(%)	94.5	96
PO	WER:			
	Amperage	(kA)	295	319
	Pot voltage	(V)	4.330	4.185
	DC kWh/t		13 650	13 000
co	NSUMPTIONS :			
	Gross carbon	(kg/t)	540	493
:	Gross carbon Net carbon	(kg/t) (kg/t)	410	397
:		(kg/t)		
:	Net carbon	(kg/t)	410	397
:	Net carbon Anodes cycle-shifts-8	(kg/t)	410	397
:	Net carbon Anodes cycle-shifts-8 TAL PURITY:	(kg/t) hours	410	397 90

Tableau no. 1 : Lauralco's results

Lauralco used GeniSim 3D ANSYS® thermo-electric models and Dyna/Marc cell simulator to improve their cell lining design.

Lauralco is now considered the most efficient smelter in the industry.

GeniSim T/E Modeling Success Story


1993 Operating Costs

(contains no depreciation or other charge for capital) (\$/for except where noted)

Smelter	Deschambault	Deschambault
Country	Canada	Canada
Company	Alumax	Alumax
Capacity (tpy)	224	235
Electricity usage (kWh/t)	13650	13000
Electricity price (\$/kWh)	0.012	0.012
Total electricity cost:	163.03	155.27
Alumina usage (t/t Al)	1.92	1.92
Alumina price (\$# Alumina)	204.80	204.80
Total alumina cost:	393.22	393.22
Other raw materials	88.44	88.44
Plant power and fuel	7.54	7.54
Consumables	38.29	38.29
Maintenance	52.93	52.93
Labor	82.00	78.00
Freight	39.09	39.09
General and administrative	67.71	67.71
Total	932.25	920.49

GeniSim T/E Modeling Success Story

Conclusions

- These days, with the support of well established and reliable mathematical models, older smelters operating at 17-18 kWh/kg due to a poor thermal design should be able to come up with successful retrofit design proposal(s) well within a year, test that (those) design proposal(s) in prototypes during a minimum of two years and then be able to proceed to a full implementation phase.
- As far as the thermal balance problem of the cell is concerned, there
 is no known technical reason that should prevent a significant
 reduction of their power consumption.

