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ABSTRACT 

The waves in commercial cells for electrolytic aluminium 

production originate at the interface between the liquid 

aluminium and electrolyte, but their effect can spread into 

the surrounding busbar network as electric current 

perturbation, and the total magnetic field acquires a time 

dependent component. The early theoretical models for the 

wave development do not account for the current 

distribution at the cathode, assuming a uniform current 

density Jz at the bottom, the magnetic field is assumed 

given as computed from stationary equilibrium position, 

and the surrounding busbar is often not accounted for the 

current perturbation closure. When the electric current and 

the associated magnetic field are computed according to 

the actual electrical circuit and updated for all times, the 

instability growth rate is significantly affected. The 

presented numerical model for the wave and 

electromagnetic interaction permits to demonstrate how 

different physical coupling factors are affecting the wave 

development in the electrolysis cells. These small 

amplitude self-sustained interface oscillations are damped 

in the presence of intense turbulent viscosity created by 

the horizontal circulation velocity field. Additionally, the 

horizontal circulation vortices create a pressure gradient 

contributing to the deformation of the interface. 

Instructive examples for the 500 kA demonstration cell are 

presented. 

NOMENCLATURE 

A    wave amplitude 

B    magnetic field 

E    nondimensional electromagnetic interaction parameter 

H    magnetic field intensity 

H=H1    typical depth (aluminium) 

/( )H H Lδ=  nondimensional depth 

I     total electric current 

J    electric current density 

L=Ly  characteristic length 

M     magnetization  
p pressure 

Re   Reynolds number 

u  velocity 

û  depth average  ε      amplitude parameter δ
     depth parameter ζ
     nondimensional interface � =Cf | û|    bottom friction coefficient 

ρ     density σ      electrical conductivity ν  kinematic viscosity 

INTRODUCTION 

The interface stability problem for aluminium electrolysis 

cells is of great practical importance due to significant 

electrical energy losses, disruptions in the technology and 

increased environmental pollution rate. The electric 

current, penetrating the electrolytic cells, together with 

the associated magnetic field are intricately involved in 

the oscillation process at the interface between liquid 

aluminium and electrolyte, which results in the observed 

wave frequencies being shifted from the purely 

hydrodynamic ones (Von Kaenel and Antille, 1996). The 

first attempts of the stability analysis date back to 70s 

(Urata 1976, Sele 1977). The multiple mode interaction 

was mathematically shown by Sneyd and Wang, 1994. 

Moreau and Evans, 1984, introduced the linear friction 

model for the wave motion and the horizontal circulation, 

and it was widely used afterwards in numerical studies. 

Actually, the linear friction is a simplification of the more 

general nonlinear bottom friction term appearing in the 

shallow water models, see for example Rastogi and Rodi 

1978. The systematic perturbation theory for the fluid 

dynamics and electric current problems, permitting to 

reduce the three-dimensional problem of the aluminium 

cell to a two-dimensional shallow layer problem was 

developed by Bojarevics and Romerio 1994. This work 

mathematically proved the wave oscillation frequency 

shift due to the magnetic interaction and the possibility of 

a resonant growth when two independent frequencies are 

moved to coincide. The wave model  has been extended 

to the weakly nonlinear case using the Boussinesq 

formulation including the linear dispersion terms 

(Bojarevics 1998). The intense turbulence generated by 

the horizontal circulation velocity is essential in order to 

explain the small amplitude self-sustained oscillations 

observed in real cells, known as ‘MHD noise’. A 

generalisation of the non-linear wave equations 

accounting for the turbulent horizontal circulation flow in 

the two fluid layers is just a first step. The second vital 

step for the fully coupled real cell problem requires the 

time dependent, extended electromagnetic field 

simulation including the fluid layers, the whole bus bar 

circuit and the ferromagnetic effects.  An instructive 

analysis of the results achieved with such a numerical 

model was started recently (Bojarevics and Pericleous, 

2006). The present paper extends the study to the cases of 

time dependent magnetic field effects, new  stable bus bar 

arrangement for the 500 kA cells, and the turbulent 

horizontal circulation coupling.  
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MODEL DESCRIPTION 

SHALLOW WATER APPROXIMATION 

Electrolytic cells are arranged in series of long rows via a 

complex network of current-carrying bus bars. An 

example of the 500kA cells modelled in the paper is 

shown in Figure 1. The liquid electrolyte  layer beneath 

the anode blocks is relatively poor electrical conductor of 

a small depth (H2=0.04-0.05 m) if compared to its 

horizontal extension (Ly=3-4 m width, Lx=10-20 m 

length). The electrolyte density (ρ 1 = 2.1e3 kg/m3) is 

slightly less than the liquid aluminium (ρ 2 = 2.3e3 kg/m3) 

bottom layer of typical depth H1=15–30 cm. The “shallow 

water” approximation assumes that the horizontal 

dimensions  are much larger than the typical depth H for 

each of the layers, and, in addition to this, the interface 

wave amplitude A is assumed to be small relative to the 

depth H. Therefore there are two small parameters of the 

problem: the nondimensional depth 
δ
 = H/L  and the 

amplitude ε  = A/H. The more detailed derivation of the 

Boussinesq equations for the wave motion  and the 

coupled horizontal circulation velocities are given in 

previous publications (see (Bojarevics and Pericleous, 

2006 and the references therein). The resulting fluid 

dynamic equations become two-dimensional after the 

depth averaging procedure is applied to the horizontal 

momentum equations. The equations for the combined 

horizontal velocity (horizontal circulation u0, plus ε -order 

εû wave motion) are 
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where the continuity of the pressure  at the interface is 

satisfied by introducing the pressure 
0( )p H  at the 

common interface. The summation convention is assumed 

over the repeating indexes k (1 or 2, respectively for x, y 

coordinates). The horizontal coordinates are made 

nondimensional by the horizontal length scale L and, 

according to the small depth assumption, the 

nondimensional interface deformation of small amplitude 

is represented as 

 
0 0 /( ) ( , , )H H L x y tδ ε ς= = .                 (3) 

The nondimensional variables are introduced using the 

following typical scales: the typical gravitational wave 

velocity is scaled as gHu =0
, gHL /  for time t, 2

01uρ  

for pressure p, IB L0
2/  for the electromagnetic force f 

( B0 is typical magnetic field magnitude and I – the total 

electric current), the relative density ρ = ρ i /ρ 1. The 

nondimensional parameters are the Reynolds number Re 

and the electromagnetic interaction parameter E: 

0Re /Lu ν= ,

2 2 2

1 0 1E ( / ) /( / ) /( )o oIB L u L IB L gρ ρ δ= = . 

The effective turbulent viscosity ν
e(x,y,t) is computed 

according to the depth averaged versions of empirical 

turbulence models. For our simulations we used a version 

of k- ω  two equation model previously validated for 

various recirculating MHD flows (Bojarevics et al. 2004). 

The nonlinear friction at the top and bottom of the fluid 

layers in (2) is defined similarly to general shallow water 

models (Rastogi and Rodi, 1978): 
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The equations of momentum (2) and the depth averaged 

continuity  
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for the two fluid layers can be combined into a single 

nonlinear wave equation for the interface ζ (x,y,t) by 

taking the time derivative of (4) and the horizontal 

divergence of (2). Then the difference between the 

resulting equations for the two layers permits to eliminate 

the common pressure at the interface )( 0Hp , yielding: 
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where F F F= −1 2  denotes difference of the respective 

variable in the two layers. The previous linear stability 

model (Bojarevics and Romerio 1994) can be recovered 

from (6) by excluding the nonlinear and the dispersion 

terms. However, the nonlinear equation (6) extends the 

wave description to the weakly nonlinear case, where, for 

instance, a solitary wave with the electromagnetic 

interaction can be described. The horizontal circulation 

velocities, driven by the rotational part of the 

electromagnetic force, can be calculated by solving the 

equation (2) in the two layers. The numerically efficient 

procedure consists of taking first the curl of the equation  

(2), then to rewrite it for the two dimensional horizontal 

flow stream function. The solution of the resulting 4th 

order equation for the stream function is sought in 

combination with the 2-equation turbulence model for the 

effective viscosity. 

 

MHD COMPUTATIONAL MODEL 

The design of bus network for high amperage reduction 

cells requires optimizing the magnetic field within the cell 

and the electric current distribution both within the cell 

and the bus bars. Since the magnetohydrodynamic driving 

force is jxB, the electric current distribution, particularly 

the horizontal components, are equally important to the 

magnetic field optimization. Physical and engineering 

considerations suggest that both problems are mutually 

interconnected and should be solved interactively. It 

means that the computer program could use the same data 

input to compute the electric current, voltages, 

temperatures in the bus network, and the magnetic field, 

the current distribution within the cell with waving metal 

interface, then finally iterate back to account for the 

spatially and temporally variable cell interpolar distance 

for the current distribution in the supplying bus network. 

This affects also the magnetic field, the metal pad waves, 

velocities, and the neighbour cells which are 

interconnected to the particular test cell (see Figure 1 for 

the model representation of the 500 kA cells). 
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Figure 1: The model busbar current distribution for 500 

kA cells in two potlines and the steel shell at the test cell.  

 

Electric Current Distribution  

The electric current distribution is calculated by coupling 

the electric current in the fluid zone to the resistance 

network representing the elements of individual anodes 

and cathode collector bars as well as the whole bus-bar 

circuit between two adjacent cells. The electric current in 

the fluid zones is computed from the continuous media 

equations governing the DC current (which can change in 

time with the waves and anode burnout process): 

 

,σ ϕ σ= − ∇ + ×j v B                           (7) 

 

where the fluid flow induced currents are accounted for 

only in the highly conducting liquid aluminium. The 

electric potential in the fluid is governed by the equation: 

 

  
2

( ),ϕ∇ = ∇ ⋅ ×v B                             (8) 

 

and the boundary conditions of zero current at the 

insulating walls, given current distribution ja at anodes, jc 

at cathode carbon.  ja and  jc are obtained from the linear 

element resistivity network solution, which in turn is 

coupled to the computed potential distribution from the 

equation (8). At the interface between the liquid metal and 

the electrolyte the continuity of the potential and the 

electric current normal component must be satisfied. Since 

the depths of the liquid layers are extremely small if 

compared to their horizontal extension, the shallow layer 

approximation is very efficient to solve this 3-dimensional 

problem. The solution, for instance in the aluminium 

layer, can be obtained from the following equation: 
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where the aluminium pad interface HAl (x,y,t) is variable, 

and the current distribution at the top and the bottom 

depend on the iterative solution from the linear element 

network of the bus bars, anodes, pins, collector bars, etc. 

(see Figure 1 showing the full network used in this paper). 

 

At the beginning of the computer simulation the MHD 

package generates automatically a very large set of 

Kirchhoff equations from the relatively simple unified data 

input. The current distribution in the bus bar network can 

be described to reasonable approximation accuracy by 

linear resistance elements. The electric currents and 

voltages in such a complex, multiply connected circuit are 

governed by the Kirchhoff laws. For the automatic circuit 

analysis purpose the ‘nodal’ analysis is more convenient 

than the ‘mesh’ analysis. The following equation set arises 

for the total number of M nodes each of which has N 

directly connected neighbour resistances: 
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where U m  is the potential at a node, U n  - for nodes at 

other ends of neighbour bars, Rn  - resistances of 

neighbour bars, Im  - external current entering the node. 

In our case total current ‘I’ enters the reference nodes in 

the liquid of previous cell and ‘-I’ current leaves the nodes 

at the liquid metal of the downstream cell. For all other 

nodes the external current - right side of the equation - is 

zero. After finding the potentials at the nodes, the 

potential difference between two neighbour nodes 

multiplied by the connecting resistance gives the current 

in each resistance. A further improvement in accuracy is 

achieved by computing Joule heating  R Im m  2 for each 

of the resistance elements.      Knowing the Joule heating, 

losses to the ambient air and the connectivity of the bars, it 

is possible to compute the temperature of a bar. When the 

temperatures are calculated, the new resistances are 

calculated, the electric circuit equation set is solved again 

to iterate the whole procedure while the convergence is 

achieved. The convergence is easily established for bars 

with physically reasonable cross sections and effective 

heat transfer to the ambient air and to the neighbour bars. 

The described procedure is sufficiently flexible to permit 

simulation of  anode changes, disconnected cathode bars, 

various branching of the current path between the cells, 

etc.  

 

Magnetic field Distribution  

Magnetic field in an aluminium cell is created by the 

currents in the cell itself and from the complex bus-bar 

arrangement around the cell, in the neighboring cells and 

the return line, and by the effect of cell construction steel 

magnetization. The complexity of any practically usable 

magnetohydrodynamic (MHD) model of the cell arises 

from the coupling of the various physical effects: fluid 

dynamics, electric current distribution, magnetic field and 

thermal field. The MHD model presented here accounts 

for the time dependent coupling of the current and 

magnetic fields with the bath-metal interface movement.     

The second step in the MHD model is to calculate the 

magnetic field B, which is necessary to determine the 

electromagnetic force distribution within the liquid zone, f 

= j x B.  The magnetic field B is the sum of two 

contributions: B = BI + BM ; BI is generated by currents 

and BM by ferromagnetic steel material.  The magnetic 

field BI from the currents in the full bus-bar network is 

recalculated at each time step during the dynamic 

simulation using the Biot-Savart law. A very similar 



 

 

4  

technique is used on the 3D grid within the cell fluid 

layers where a special analytical technique is applied to 

deal with the singularity in the Biot-Savart law in order to 

obtain a smooth and converging solution when the field 

calculation position coincides to the electric current. 

The calculation of the magnetic field BM from steel 

requires much more effort.  The difficulty arises because 

the steel parts of the cell are made of ferromagnetic 

material whose magnetization M (H) depends non-linearly 

on the local magnetic field intensity H in the magnetic 

material.  The local magnetic field (induction) B in the 

ferromagnetic material is orders of magnitude higher than 

in the non-magnetic material, like air, liquid aluminium, 

electrolyte etc.  Equation (11) gives the relationship 

between magnetic induction, magnetization and magnetic 

field intensity. 

    )( HMB 0 += µ                                  (11) 

where �
0 is the permeability of vacuum, equal to 4π  x 10-7 

(H/m). In the magnetic material the unknown magnetic 

field intensity H is related to the magnetization M (H) by 

the material properties of a particular material (depending 

also on the temperature, carbon content in steel, previous 

magnetization). In order to find the unknown magnetic 

field intensity, we need to solve the integral equation: 
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where the magnetic field HI is given by the Biot-Savart 

law from all the external electric currents, the co-ordinate 

location r is for the field calculation position (observation 

point), the integration point position r’ is in the element 

volume dV’ running through all the ferromagnetic 

material in Vm.  The iterative solution procedure for the 

equation (12) calculates H for the elements, then uses M 

(H) material property to obtain the updated magnetization. 

The obvious complication is due to the singularity in (12) 

when the integration point coincides with the observation 

point.  This is a very important contribution to the solution 

and can not be simply discarded; instead the analytical 

singularity elimination is used to give smooth results. 

Once the magnetization of steel is known, the magnetic 

flux density B = � 0 H for the fluid zones is calculated from 

the equation (12).  

For the magnetic field computation, the busbar network is 

extended to include 6 neighboring cells as shown in 

Figure 1.  The ferromagnetic parts are divided into 

approximately 30000 nonlinear elements.  Figure 2 shows 

the magnetic field distribution in the steel potshell, from 

which the location of the major electric bus elements can 

be easily recognized. 

   

 

Figure 2: Magnetic field in the steel shell.  

TIME DEPENDENT SIMULATION RESULTS FOR 

500 KA CELL 

  

The MHD model uses a relatively course mesh of 64x32x2 

in each fluid layer in order to be able to re-compute the 

electromagnetic and fluid dynamic fields time dependent 

distribution in a reasonable execution time.  Nevertheless, 

the solution is sufficiently smooth because of the global 

pseudo-spectral approximation used for the velocity and 

interface discretisation, which permits much higher 

accuracy in comparison to finite element or finite volume 

approximations on the similar grid size.  

The aluminium-electrolyte interface deformation makes 

the anode currents unequal because of the local ACD 

change.  The model includes an option to account for the 

time average gradual consumption of the anode bottom to 

conform to the ACD change.  An artificially accelerated 

anode burn-out is permitted in order to achieve the result 

in a reasonable computational time interval. The 

importance of this option was demonstrated in the recent 

study (Bojarevics and Pericleous, 2006) demonstrating a 

significant stabilization effect. It was activated for the 

following cases. 

The solution for the coupled MHD problem of the 

electrolysis cell demonstrates strong correlation between 

different fields during the wave process development. The 

electric current in the aluminium layer develops rather 

significant horizontal components because of the varying 

electrolyte thickness. As seen from figure 3, the horizontal 

current flow is affected by the interface waving. The two 

corresponding time moment interface shapes are presented 

in the Figures 4 and 5 respectively.  

 

 

 

Figure 3: Electric current in the liquid metal at initial 

stage and after the interface wave development. 

 
Figure 4: The liquid metal surface for the reduced ACD 

=0.035m at an initial time moment. 
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Figure 5: The liquid metal surface for the reduced ACD 

=0.035m at t=100 s. 

 

The bus bar arrangement for the present study was further 

optimized in order to reduce the vertical magnetic field 

average value from about 9 Gs to 6 Gs, and to reduce the 

local Bz extremum magnitudes from about 32 Gs to 18 Gs. 

Figure 6 shows the 3 dimensional view of the magnetic 

field distribution at the top of the liquid metal. The 

magnetic field is time dependent, and it oscillates very 

similarly to the interface oscillation pattern as clearly 

demonstrated in Figure 7. Remarkably the Fourier power 

spectra demonstrate that exactly the same frequency 

oscillation is excited for the magnetic field as for the 

liquid metal surface. Physically the source for these 

variations in the B field are the electric currents in the 

liquid metal and in the nearby bus bars.   

   

 

Figure 6: Magnetic field in the liquid metal. 

 

 
Figure 7: The oscillations (top) and the corresponding 

Fourier spectra (bottom) compared for the liquid metal 

surface and the magnetic field updated at all times. 

 

The above results are presented for a slightly reduced 

average ACD of 0.035 m instead of the target value of 

0.045 m, because a small oscillation is more visible in the 

former case. When the ACD is increased to 0.045 m, the 

cell becomes very stable when the magnetic field is 

updated at all times continuously. However, if we choose 

not to update the B field in time, and to keep it fixed as 

computed for the initial ‘stationary’ interface shape, then 

the cell becomes less stable with some oscillations as can 

be seen from the Figure 8. The Fourier spectra peaks are 

also rather different. With the B stationary the interface 

oscillation exhibits one single peak, while the time 

dependent B gives significantly smaller amplitude peaks at 

3 different frequencies. This indicates that the full time 

dependent model includes a physical parametric damping 

mechanism by the self adjusting magnetic field. It is worth 

to note that the B variation is just of an order of less than 1 

Gauss, but the parametric damping is clearly seen for the 

interface effect. The corresponding interface shapes are 

shown in Figures 9 and 10 for the same time moments. 

 
Figure 8: The liquid metal surface oscillations (top) and 

the corresponding Fourier spectra (bottom) compared 

when the magnetic field is either updated at all times or 

kept stationary as computed for the initial moment. 

 

Figure 9: The liquid metal surface for the ACD =0.045m 

at t=100 s. 

 
Figure 10: The liquid metal surface for the ACD =0.045m 

at t=100 s when the magnetic field B is kept stationary. 
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As noted previously, the horizontal circulation velocity 

distributions in the two layers have a profound effect on 

the cell stability. The velocity patterns with the generated 

turbulent kinetic energy distributions are shown in the 

Figures 11 and 12. The differences in the vortex centre 

locations and their intensities are responsible for the 

additional pressure gradient along the interface, 

consequently changing the interface topology, as 

discussed previously (Bojarevics and Pericleous, 2006). In 

addition to this, there is a significant effect from the 

bottom friction coefficient on the intensity of the 

horizontal circulation and the wave intensity. The value of 

Cf = 0.45 corresponds to the rough wall channel. This was 

used in most of the simulations. When changing this value 

to the smoother bottom situation, i.e., Cf = 0.045 (an order 

of magnitude less!), the cell becomes less stable, as can be 

seen from the Figure 13. The horizontal circulation is also 

affected by the wave motion, and the oscillation can be felt 

in the turbulent horizontal velocities. This creates a 

modulation effect of the interface oscillations, as seen 

from the Figure 13 when comparing the oscillations for 

the case with artificially made stationary horizontal 

circulation after the initial transient of 100 s. 

 

 
Figure 11: The liquid electrolyte horizontal velocity. 

 

 
Figure 12: The liquid metal horizontal velocity, t=100 s. 

 
Figure 13: The oscillations (top) and the corresponding 

Fourier spectra (bottom) compared for different bottom 

friction coefficient value and the case when the horizontal 

circulation is kept stationary after initial 100 s. 

 

Figure 14: The liquid metal surface oscillations compared 

for the two bus arrangements. 

Finally, we would like to note that the newly modified 

version of the 500 kA bus arrangement is significantly 

more stable than the previously considered, as 

demonstrated in figure 14. The previous bus was stable 

only for the ACD increased to 0.055 m, whereas the new 

one is stable for the 0.045 m ACD.  

CONCLUSION 

The user friendly MHD numerical programme package 

simulates the real cell behaviour including the full 

coupling between the hydrodynamic and electrodynamic 

fields at all times. The inclusion of various design 

elements and physical factors are of importance for 

predicting the cell response to operation practice and the 

particular cell parameters.  
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