
TIME DEPENDENT MHD MODELS FOR ALUMINIUM REDUCTION CELLS 
 

V. Bojarevics and K. Pericleous 

 

University of Greenwich, Park Row, London SE10 9LS, UK 

 

Keywords: electrometallurgy, aluminium reduction cells, waves, magnetohydrodynamics 

 

Abstract 
 

Time dependent MHD or stability problems for the aluminium reduction cells are typically 

restricted to the mathematical developments without the inclusion of the electrolyte channels. 

However, according to the well known Moreau-Evans model, the presence of electrolyte channels 

increases very significantly the stationary interface deformation. In this paper general time 

dependent theory and numerical modelling of an aluminium cell is extended to the case of variable 

bottom of aluminium pad and variable thickness of electrolyte to account for the channels. 

Instructive analysis is presented for multi-physical coupling of the magnetic field, electric current, 

velocity and wave development by animated examples for the high amperage cells. The results 

indicate that the ‘rotating wave’ instability is dominant in simplified cases not accounting for the 

effect of channels. The effect of channels creates a stabilizing effect, resulting in a ‘sloshing’, 

parametrically excited MHD wave development in aluminium reduction cells. 

 

Introduction 
 

Magneto Hydro Dynamic (MHD) problems for aluminium electrolysis cells are of increasing 

importance with the rise of the amperage in the modern cells. The electric current, interacting with 

the associated magnetic field, creates agitating effects limiting the cell productivity, and can cause 

an instability of the interface between liquid aluminium and electrolyte. This can cause significant 

electrical energy loss, disruption in the technology and increase of environmental pollution rate. The 

time dependent MHD or stability problems for the aluminium reduction cells are usually treated as 

simplified mathematical models restricted to a bare minimum of the essential interacting physical 

factors, like simplified magnetic field, electric current distribution, cell geometry, neglecting 

turbulent velocity field, etc. One of the significant neglected physical factors for the stability 

problems of aluminium electrolysis cells is the absence of the electrolyte channels, see for example 

[1-4]. In the stationary case without waves Moreau and Evans [5] introduced a model for the 

electrolyte channels surrounding the anodes, their influence on the horizontal flow circulation and 

the metal-bath interface deformation. According to their model the interface deformation in the 

stationary case increases very significantly when the electrolyte channels are accounted for.  

The variable bottom effects and the horizontal circulation interaction with the waves are widely 

investigated in the sea wave studies using shallow water models [6]. Recently a theory and a 

numerical model of the ‘shallow layer’ electrolysis cell was extended to the cases of variable 

bottom of aluminium pad and the variable thickness of the electrolyte due to the anode nonuniform 

burn-out process and the presence of the side channels [7]. However, in this paper the free surface 

on top of the electrolyte channels was not accounted for, effectively assuming that the rigid lid 

surface condition is imposed both for the channels and the solid anode bottom. 

The problem of the interface calculation became apparent in the light of the recent paper [8] 

providing a ‘benchmark’ test for the stationary interface and the velocity field in liquid metal. 

During the first attempts to apply the numerical model [7] to the ‘benchmark’ case we obtained a 
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good correspondence to velocity field and the electric current results, but the interface shape 

initially was quite different from that presented in [8]. Therefore we reconsidered the theory by 

including the free surface effects for the bath filled deep channels, effectively extending the 

Moreau-Evans model to the non-stationary case. The new version is directly applicable to the 

previous full nonlinear wave model and the dynamic interaction with the electromagnetic field as it 

is implemented in the MHD numerical code suitable for commercial high amperage cell modelling. 

 

New model for the time dependent interface 
 

In the present extension of the ‘shallow water’ theory for variable depth of two fluid layers with a 

common interface we will assume that the layer deformation is small, except for the channels whose 

effect will be expressed as a hydrostatic ‘connected vessels’ principle. The shallow water model 

derivation starts with the assumption that for a small depth of fluid the vertical momentum equation 

reduces to quasi-hydrostatic equilibrium between the vertical pressure gradient p∇  and the gravity 

force ρg . After integrating along the vertical coordinate z: 

 

( , , ) ( ) ( ),p x y z p H g z Hρ− = − −                                                         (1) 

 

where the reference height H(x,y,t) can be chosen to coincide with the common surface for both 

liquid layers – the unknown interface between the metal and the electrolyte layers. The gradient in 

the horizontal direction of the hydrostatic pressure distribution does not depend on vertical 

coordinate in the respective layer, as can be seen from (1). If the top surface of the bath layer is 

denoted as Ht , then the pressure at the top of channels covered by a rigid lid could be obtained by 

solving the horizontal momentum equations. However, if there is a free surface on top of the 

electrolyte channels, then  p(Ht) = 0, and the pressure at the variable interface H(x,y,t)  is related by 

the hydrostatic condition (1) at the local horizontal position: 

 

2( ) ( ( , , ))tp H g H H x y tρ= − ,                                                      (2) 

 

where for clarity we added the index ‘2’ for the electrolyte properties. According to the Moreau & 

Evans [5], the top surface Ht  in the channels is practically flat and equal in all the electrolyte 

channels. If the channels (side, middle and between the individual anodes) are sufficiently deep, say 

2-3 or more times the average anode-cathode distance (ACD), then this hydrostatic pressure will be 

effectively dominating contribution in the whole electrolyte layer, similarly to ‘connected vessels’ 

principle. The electromagnetic force in the electrolyte will add only a smaller order of magnitude 

modification to this dominant hydrostatic pressure. From the equation (2) then  follows an 

approximated leading order horizontal pressure gradient variation in the electrolyte at the variable 

interface H(x,y,t): 

 

2 2( ) ;        ( )x x y yp H g H p H g Hρ ρ∂ = − ∂ ∂ = − ∂ .                                    (3) 

 

With these approximations for the pressure and its horizontal gradient in both shallow layers, we 

can express the horizontal momentum equations for the depth average non-dimensional quantities. 

Initially we will consider the stationary case only. The Moreau & Evans model [5] is based on the 

linear equations for the two fluid layers:  

 
ˆˆ ˆ0 ;       0j j j j jp u f u∂ µ ∂= − − + = ,                                                 (4) 
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where the indexes j = (1 or 2) represent respectively x and y coordinates, the summation over 

repeated indexes j means the divergence free depth average velocity field. After substituting the 

depth independent pressure gradient from (3), the horizontal momentum equations are 

 
ˆˆ0 ( )j i j j jp H g H u f∂ ρ µ= − − ∂ − + .                                              (5) 

 

The common pressure p(H) at the interface can be eliminated by taking the difference between the 

equations in the two layers, characterized each by the respective index: i=1 (aluminium) and i=2 

(electrolyte). The unknown interface shape will be determined by solving the resulting equations 

coupled to the velocity field. When the channels are absent, the friction coefficient µ can be 

assumed as a constant in each layer, and the equation (5) gives the second order equation for the 

interface: 

1 2 1 2
ˆ ˆ( ) ( ) 

jj j j j
g H f fρ ρ ∂− =∂ − .                                                    (6) 

 

The boundary conditions are derived from (5) using zero normal velocity condition at the cell walls. 

However, in the presence of the bath channels the approximation of a constant friction coefficient is 

not valid, dropping sharply to a very low value in the channels. Therefore the divergence operator 

applied to (5) will not eliminate the velocity field from the interface equation. The coupling to the 

intense velocity near the channels can be eliminated, to the  hydrostatic approximation accuracy 

discussed previously (3). Applying the hydrostatic pressure gradient (3) directly in the equation (5) 

for the aluminium (i = 1) layer only:  

 

1 2 1 1 1
ˆˆ0 ( ) j j jg H u fρ ρ µ= − − ∂ − + .                                             (7) 

 

The continuity of the pressure  at the interface is already satisfied by choosing the pressure  p(H) at 

the common interface. The bottom friction coefficient in the aluminium is constant according to the 

Moreau & Evans model, and the divergence of (7) gives the stationary interface equation  in the 

case with deep electrolyte channels having free top surface: 

 

 
1 2 1

ˆ( ) ( ) 
jj j j

g H fρ ρ ∂− =∂ .                                                      (8) 

 

The horizontal circulation velocities, driven by the rotational part of the electromagnetic force, can 

be calculated by solving the momentum equations in the two layers. Additionally in a more general 

approach, the 2-equation (e.g. k-ε ) turbulence model can be applied for the horizontal turbulent 

momentum diffusion (the effective viscosity). We will not consider here this part of the theory (see 

[7]), instead focusing on the time dependent interface evolution equation. 

Taking into account the hydrostatic pressure distribution in the presence of the channels for the full 

time dependent interface equation stated previously in [7], we have the non-linear wave equation 

for the aluminium-electrolyte interface H(x,y,t) with the variable bottom Hb(x,y) and top Ht(x,y): 

  

1 2 1 1 2 2
1 2

1
1 1 1 1 1 2 2 22

( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) [ ( ) ( )]

tt t jj

b t b t

j j b jj z j k k j j k k j

H H g H
H H H H H H H H

f H H f u u u u

ρ ρ ρ µ ρ µ
∂ ∂ ρ ρ ∂

∂ ρ∂ ∂ ρ ∂ ∂

+ + + − −
− − − −

=∂ − − − − −

                               (9) 

 

The linear stability models can be recovered from (9) by excluding the nonlinear horizontal velocity 
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term (containing the rotational and potential parts), the vertical electromagnetic force component fz 

contribution, and assuming the Hb and Ht as constants. The nonlinear equation (9) extends the wave 

description to the cases of variable top and bottom, in the presence of electrolyte channels. The 

complexity of any practically usable MHD model arises from the coupling of the various physical 

effects: fluid dynamics, electric current distribution, magnetic field and thermal field. Magnetic 

field in an aluminium cell is created by the currents in the cell itself and from the complex bus-bar 

arrangement around the cell, in the neighboring cells and the return line, and by the effect of cell 

construction steel magnetization. The general MHD model, presented previously in [7] and 

references therein, accounts for the time dependent coupling of the current and magnetic fields with 

the bath-metal interface movement. The magnetic field from the currents in the full bus-bar network 

is recalculated at each time step during the dynamic simulation using the Biot-Savart law. 

 

Numerical results for 180 kA and 500 kA cells 
 

The numerical solution of the described MHD model uses a mesh of 128x64x2 and a spectral 

function representation for each fluid layer. This ensures sufficient accuracy of solution, while 

permitting to re-compute the time dependent distribution of electromagnetic and velocity fields in a 

reasonable computational time. The numerical model was successfully tested [9] against the 

‘benchmark’ test [8] regarding the stationary fields. The test involved an assumed distribution of 

stationary electric current supply to the top and bottom of the liquid and a given magnetic field. For 

a more realistic case, similar to many commercial cells, we will present a comparison of two cases 

with the full bus-bar arrangement around the cell, accounting for the time variation of the electric 

currents and magnetic field. The bus arrangement is presented in the Figures 1 and 2 showing side 

by side comparison of the two cells: a relatively small 180 kA and much larger 500 kA cells. The 

cells are arranged side by side in the full pot-line with a return line. Only the active simulation cell 

is shown, but the magnetic field from the adjacent cells is included in the full simulation. The other 

noticeable feature of the model is the presence of the steel shell made of magnetizible material, 

which is fully accounted for by a finite element discretization and iterations over the user prescribed 

non-linear magnetization curve. The computed magnetic field is 3-dimensional and changes in time 

if the electric currents fluctuate with the waves at the electrolyte-metal interface. The computed 

magnetic field at the top and bottom of liquid metal for the smaller 180 kA cell is shown in Figures 

3 and 4, which demonstrates the importance of the depth dependence of the magnetic field in the 

fluid layer. 

 

    
 

Figure 1. Left: busbar arrangement for the 500 kA cell generated by the numerical model. 

Figure 2. Right: busbar arrangement for the 180 kA cell shown to the same scale as in Figure 1. 
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Figure 3. Magnetic field at the top of liquid metal for 180 kA cell. 

 

 
Figure 4. Magnetic field at the bottom of liquid metal for 180 kA cell. 

 

 
 

Figure 5. The electric current in liquid electrolyte with the channels at initial stage for 500 kA cell. 

 

 
 

Figure 6. The computed electric current in liquid electrolyte with the channels at later stage of wave  

development with the anode burn-out activated for 500 kA cell. 
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Figure 7. The computed anode bottom in contact to the liquid electrolyte with the channels for 500 

kA cell after the burn-out option is activated. 

 

The electrolyte channels affected significantly the electric current distribution in the electrolyte 

layer is, as can be seen from the Figure 5. In addition to that, when the metal-electrolyte interface is 

deformed or in a wave development process, this is instantaneously reflected in the electric current 

distribution as shown in the Figure 6. The usual argument, that the electric current distribution will 

be smoothed out with the anode bottom acquiring the shape of the time average interface shape, is 

true only partially because of the time dependent nature of the wave process. The numerical model 

includes the option to account for the anode bottom burn-out according to the time-average or 

stationary interface shape (Figure 7).  

The electromagnetic force distribution as computed for the electric current and the resulting 

magnetic field shows that the overall force distribution and magnitude are quite similar in both fluid 

layers. There is practically a balance between the ‘pinching’ effects of the forces in the two layers. 

Therefore it is not surprising to find for the case without the effect of the electrolyte channels that 

the interface deformation is very small and slightly inflected in the middle (because of a slightly 

larger force concentration in electrolyte), as shown in the Figure 8. A strikingly different interface 

deformation (Figure 9)  is obtained when using the model equation (8), or even (9), with the 

hydrostatic pressure dominating in the electrolyte. The result is validated by the published 

‘benchmark’ results [8,9].  

 

 
 

Figure 8. (Left) The computed metal-bath shape for 180 kA cell without the open channel effect. 

Figure 9. (Right) The computed metal-bath shape for 180 kA cell with the open channel effect.  

 

For further tests the velocity fields were computed. The computed velocity in the electrolyte [9]  is 

very similar qualitatively to that predicted by Moreau & Evans [2], clearly showing the effects of 

the intense recirculation in the channels. The flow is sufficiently intense and develops significant 

turbulence, which leads to a redistribution of the velocity field. The established velocity field for the 

aluminium layer [9] is very similar to that predicted in [8] as a part of the ‘benchmark’ tests. 

The full MHD time dependent code includes continuous coupling of the electrodynamic and 

hydrodynamic fields. The horizontal electric currents in the liquid metal affect the magnetic field, 

making it 3-dimensional and different at the top and bottom of the metal layer (Figures 3 and 4). 
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Initially the deformation of the liquid metal surface is computed from the electric current given for a 

flat interface, with or without the effect of electrolyte channels, leading to what is usually assumed 

to be a ‘stationary’ interface. The time development of the coupled fields shows that the waves are 

initiated and may continue to grow in amplitude or are gradually damped depending on the 

distribution of the magnetic field in a particular cell. The cases without the inclusion of the 

electrolyte channels demonstrate that the instability sets in more easily, and in the extreme case the 

time when the wave crest reaches the anode bottom is shorter (Figure 10). The instability type in the 

case without the channels is the classical rotating wave (see Figures 8 and 11) , as described in the 

theoretical papers [1-4]. The presence of the electrolyte channels changes the instability type, which 

resembles more a ‘sloshing’ wave constrained along the middle longitudinal line of the cell (Figures 

9 and 12). The magnetic field for the 500 kA cell is better optimized for the stability purpose, 

therefore the waving is of a smaller amplitude and not growing with time (Figure 13). The effect of 

the electrolyte channels is similar as in the smaller 180 kA cell: the channels increase the stationary 

deformation, but make the cell significantly more stable to the waves. An important observation is 

also deduced when running the full case with the time varying magnetic field. This case 

demonstrates the additional stabilizing effect of the magnetic field self-adjustment to the wave 

induced electric current redistribution. If the full 3-dimensional magnetic field is kept fixed as 

computed initially for the ‘stationary’ interface, as in many previous studies, the cell is far less 

stable.  

 
Figure 10. Different type of instability when the channels and steel are accounted in 180 kA cell. 

 

 
 

Figure 11. The computed metal-bath shape for 500 kA cell without the open channel effect. 

 

 

 
Figure 12. The computed metal-bath shape for 500 kA cell with the open channel effect.  
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Figure 13. Waves in the 500 kA cell when the channels and magnetic field time dependence are 

accounted for. 

 

Conclusions 

 

The Moreau-Evans model can be extended to the case of non-stationary cell behavior. The inclusion 

of the electrolyte channels is crucial to predict the correct interface deformation both in the 

stationary case and the wave development. The full coupled electromagnetic and hydrodynamic 

simulation reveals new stabilizing effects. 
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