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This year at the TMS, the authors will present a study on the influence of the cathode surface geometry on 

the metal pad current density and on the cell stability [1]. That cell stability analysis was carried out using 

a MHD-Valdis code version that was not accounting of the impact of the cathode surface geometry on the 

cathode surface current density.  

Also this year at the TMS, the second author will present a new version of the MHD-Valdis code that takes 

that effect into account [2]. The first cell stability study presented here is a repetition of the study 

presented in [1] on the impact of transversal ridges on the cell stability using that new code version. 

In 2005, the first author presented the cell heat balance study of a 740 kA cell [3]. One year later, the 

authors presented the cell stability study of that same 740 kA cell [4]. That cell used an innovative 

magnetic compensation scheme that ensured its MHD stability. 

The authors claimed at the time that they cannot foresee any thermo-electric, thermo-mechanic or MHD 

related issue that would limit the size of a cell. Since that time, many 400+ kA full size smelters have been 

built in China, Russia and UAE and the AP60 demonstration smelter started its operation in Canada.    

Since a 740 kA cell no longer seems far fetched, the second cell stability study presented here is the one of 

a 1500 kA cell in order to reiterate the point that as far as MHD cell stability is concerned, there is no 

foreseeable limit to the size on an aluminium electrolysis cell.  

Study of the Impact of Transversal Ridges on Cell Stability 

Cathode surface with transversal ridges is one design now very popular in China [5]. It has been observed 

to be very beneficial to reduce specific energy consumption as presented in [6]. This has been achieved by 

greatly reducing the ACD which seems to imply that cells with transversal ridges are more stable than cells 

with flat cathode surface. Yet, the cell analysis studies presented in [7] and [1] are not confirming that 

interpretation of the observed facts. 

The study presented in [7] neglected the impact of the cathode surface geometry on the cathode surface 

current density. The study presented in [1] did account for that effect but not very accurately as the effect of 

the cathode surface geometry on the cathode surface current density had to be imposed. The new cell 

stability study presented here was done on the most recent version of the MHD-Valdis code that takes fully 

into account all the impact of the transversal ridges on the MHD behavior of the cell [2]. 

Figure 1 presents the metal pad current density solution comparison between the flat cathode surface case 

(top) and the cathode surface with transversal ridges case (bottom). The geometry of the cathode surface 

ridges is presented in Figure 2. It can be noticed that the mesh is not quite fine enough to perfectly capture 

the ridges geometry or the extra longitudinal currents (JX) generated by the ridges presence (see [1] for 

more details). 



 

 

Figure 3 presents the steady-state metal pad flow field solution comparison. The presence of the ridges 

slows down the flow but not significantly. Figure 4 presents the steady-state bath-metal interface 

deformation solution comparison. Again, the presence of the ridges is only barely affecting the shape of the 

interface deformation. 

The previously presented results demonstrated that the presence of the transversal ridges only marginally 

affects the steady state solution, adding some flow resistance to the cathode surface. This in turn slows 

down the metal recirculation flow which is good for cell stability but also introduces some longitudinal 

horizontal current which is bad for cell stability. 

Only the full non-linear transient cell stability analysis can tell us what is the impact of those transversal 

ridges on the cell stability and the only practical tool to carry-up such a non-linear transent cell stability 

analysis is MHD-Valdis. Figure 5 presents the comparison of the transient cell stability analysis results. 

The results indicate that the addition of transversal ridges, while keeping the same metal pad height hence 

reducing the mass of metal, slightly decreases the cell stability. So this new cell stability study confirms the 

results of the previous ones, adding transversal ridges has only a marginal effect of the cell stability and 

that marginal effect can be detrimental if the mass of metal is not kept the same. See [1] for an alternative 

explanation as for where the observed gain of cell stability is coming from. 

Study of the Cell Stability of a 1500 kA Aluminium Electrolysis Cell 

The 1500 kA cell that will be the subject of this study is twice the size of the 740 kA that was studied in [3] 

and [4] which itself was 50% bigger than the 500 kA cell retrofitted into a 600 kA cell in [8]. That 50 

meters long cell has 72 cathodes blocks, 144 anodes and 18 risers. Each riser feeds the current coming from 

4 cathodes blocks to 8 anodes. 

In principle, the 740 kA cell could be retrofitted into a 890 kA cell; so 1500 kA is well within reach of a 

cell having twice that size. Figure 6 presents the BZ component of the magnetic field obtained by passing 

1500 kA into a 50 meters long cell fed through 18 risers using a very efficient magnetic compensation 

scheme. Since the magnetic compensation scheme is 100% scalable, it works equally well on any cell size 

as this 1500 kA cell example demonstrates. 

Figure 7 presents the resulting metal pad flow field solution while Figure 8 presents the steady-state bath-

metal interface deformation. Notice the upstream downstream symmetry of the bath-metal interface 

deformation which is also the result of the magnetic compensation scheme used. 

The transent cell stability analysis predicts that this 1500 kA cell with essentially no existing BZ gradient in 

the long (X) direction of the cell will be extremely stable as it can be seen in Figure 8. Any organization 

interested to patent the busbar compensation scheme used in that study in partnership with GeniSim Inc. 

can contact the first author. 

Conclusions 

The authors hope that these demonstration studies highlight the value of using mature state of the art 

mathematical models like MHD-Valdis to carry-up such MHD cell stability studies.  MHD-Valdis, used by 

the majority of the groups actively developing high amperage cell technology today, is available to the 

whole aluminium industry through GeniSim Inc.  
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Figure 1: Metal pad current density solution for the flat cathode surface case (top) and cathode surface with 

transversal ridges case (bottom) 



 

 

  

 

Figure 2: Cathode surface geometry with the transversal ridges 



 

 

  

 

Figure 3: Metal pad flow field solution for the flat cathode surface case (top) and cathode surface with 

transversal ridges case (bottom) 



 

 

 

Figure 4: Bath-metal interface deformation solution for the flat cathode surface case (top) and cathode 

surface with transversal ridges case (bottom) 



 

 



 

 

Figure 5: Transient cell stability analysis results for the flat cathode surface case (top) and cathode surface 

with transversal ridges case (bottom) 



 

 

Figure 6: Bx componant of the magnetic field of the 50 meters long 1500 kA cell  

 



 

 

 

Figure 7: Metal pad steady-state flow field for the 1500 kA cell 



 

 

 

Figure 8: Steady-state bath metal interface deformation for the 1500 kA cell 



 

 

Figure 9: Transient cell stability analysis results for the 1500 kA cell 

 

 

 

 


